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c contributions of repetitive DNA elements to human gene regulation. Human
proximal promoter sequences show distinct distributions of transposable elements (TEs) and simple sequence
repeats (SSRs). TEs are enriched distal from transcriptional start sites (TSSs) and their frequency decreases closer
to TSSs, being largely absent from the core promoter region. SSRs, on the other hand, are found at low frequency
distal to the TSS and then increase in frequency starting ∼150 bp upstream of the TSS. The peak of SSR density is
centered around the −35 bp position where the basal transcriptional machinery assembles. These trends in
repetitive sequence distribution are strongly correlated, positively for TEs and negatively for SSRs, with relative
nucleosome binding affinities along the promoters. Nucleosomes bind with highest probability distal from the
TSS and the nucleosomebinding affinity steadily decreases reaching its nadir just upstreamof the TSS at the same
point where SSR frequency is at its highest. Promoters that are enriched for TEs are more highly and broadly
expressed, on average, than promoters that are devoid of TEs. In addition, promoters that have similar repetitive
DNA profiles regulate genes that have more similar expression patterns and encode proteins with more similar
functions than promoters that differ with respect to their repetitive DNA. Furthermore, distinct repetitive DNA
promoter profiles are correlated with tissue-specific patterns of expression. These observations indicate that
repetitive DNA elementsmediate chromatin accessibility in proximal promoter regions and the repeat content of
promoters is relevant to both gene expression and function.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The prevalence of repetitive DNA sequences inmammalian genomes
has been appreciated since the classic re-association kinetic (COT-curve)
experiments of the late nineteen-sixties (Britten and Kohne, 1968). The
completion of the human genomeprojects at the turn of themillennium
further underscored the extent towhich thehumangenomesequence is
made up of repetitive DNA elements (Lander et al., 2001; Venter et al.,
2001). There are several distinct categories of repetitive sequence ele-
ments in the human genome. Interspersed repeat sequences, also
known as transposable elements (TEs), make up at least 45% of the
euchromatic genome sequence, and novel human TE families continue
to be discovered and characterized (Wang et al., 2005; Nishihara et al.,
2006). Simple sequence repeats (SSRs) consist of tandem repeats of
exact or nearly exact units of length k (k-mers), with k=1–13 corres-
ponding to microsatellites and k=1–500 for minisatellites. Analysis of
the human genome sequence showed that ∼3% of the euchromatic
sequencewasmade up of SSRs, and both SSRs and TEs are thought to be
imple sequence repeat; TSS,
ne expresssion atlas 2.
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far more abundant in heterochromatin. Segmental duplications of 1–
200 kb were initially shown to account for ∼3% of the human genome
sequence (Lander et al., 2001), and more recent results reveal that copy
number variants populate the genome to aneven greater extent (Kidd et
al., 2008).

The evolutionary significance and the functional role that repetitive
genomic elements, TEs in particular, play has long been a matter of
speculation and inquiry. Once regarded as selfish, or parasitic, genomic
elementswith little or no phenotypic relevance (Doolittle and Sapienza,
1980;Orgel andCrick,1980), it has since becomeapparent thatTEsmake
substantial contributions to the structure, function and evolution of
their host genomes (Kidwell and Lisch, 2001). Perhaps the most
significant functional effect that TEs have had on their host genomes is
manifest through the donation of regulatory sequences that control the
expression of nearby genes (Feschotte, 2008). Studies of TE regulatory
effects have focused, for the most part, on discrete well characterized
regulatory elements such as transcription factor binding sites (Jordan
et al., 2003; van de Lagemaat et al., 2003; Wang et al., 2007), enhancers
(Bejerano et al., 2006) and alternative promoters (Dunn et al., 2003;
Conley et al., 2008). A number of recent studies have also outlined the
contributions of TEs to regulatory RNA genes (Smalheiser and Torvik,
2005; Borchert et al., 2006; Piriyapongsa and Jordan, 2007; Piriyapongsa
et al., 2007). For this study, we sought to analyze the contribution of
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repetitive DNA to epigenetic aspects of gene regulation, specifically the
relationship between repetitive DNA elements and the chromatin
environment of human promoter sequences.

Genomic DNA in eukaryotes is wrapped around histone proteins
and packaged into repeating subunits of chromatin called nucleo-
somes (Kornberg and Lorch, 1999). The importance of specific
genomic sequences in determining the binding locations of nucleo-
somes has recently been confirmed (Segal et al., 2006). A number of
factors point to a relationship between repetitive DNA elements, the
local chromatin environment and epigenetic gene regulation. Densely
compact heterochromatin is enriched for both TEs and SSRs in a
number eukaryotic organisms (Dimitri and Junakovic, 1999). Hetero-
chromatin functions to mitigate potentially deleterious effects
associated with TEs by repressing both element transcription and
ectopic recombination between dispersed element sequences (Grewal
and Jia, 2007). In fact, it has been proposed that heterochromatin
originally evolved to serve as a genome defense mechanism by
silencing TEs (Henikoff and Matzke, 1997; Henikoff, 2000). In the
plant Arabidopsis, de novo heterochromatin formation can be caused
by insertions of TEs into euchromatin, and TEs are able to
epigenetically silence genes when they are inserted nearby or inside
them (Lippman et al., 2004). In other words, TEs have been shown to
cause specific in situ changes in the chromatin environment that can
spread locally and regulate gene expression in a way that is region-
specific but sequence-independent (i.e. epigenetic).

The previously established connections between genome repeats,
chromatin environment and gene regulation for model organisms,
taken together with the repeat-rich nature of the human genome,
suggest that repetitive sequence elements may play a role in
regulating human gene expression by modulating the local chromatin
environment. Specifically, we hypothesized that gene regulatory
related differences in nucleosome binding at human promoter
sequences are mediated in part by repetitive genomic elements. We
evaluated the relationship between nucleosome binding, repetitive
element promoter distributions and human gene expression to test
this idea. Human proximal promoter sequences were characterized
with respect to both their repetitive DNA architectures and predicted
nucleosome binding affinities, and the repetitive DNA environment of
the promoters was considered with respect to patterns of gene
expression.

2. Materials and methods

2.1. Promoter sequence analysis

Our analysis focused on proximal promoter sequence regions,
which we define for a gene as ranging from−1 kb at the 5′ end to the
transcription start (TSS) at the 3′ end. We relied on the Database of
Transcriptional Start Sites (DBTSS) to identify experimentally charac-
terized TSS, based on aligned full-length cDNA sequences, in the
human genome (Suzuki et al., 2002). These TSS were mapped to the
March 2006 human genome reference sequence (NCBI Build 36.1) and
used to extract 1 kb proximal promoter sequences as described
previously (Marino-Ramirez et al., 2004; Tharakaraman et al., 2005).
This procedure was used to ensure analysis of the most accurate set of
human proximal promoter sequences possible. For the additional
three mammalian species analyzed – chimpanzee (Pan troglodytes),
mouse (Mus musculus) and rat (Rattus norvegicus) – the locations of
proximal promoter sequences were determined based on the 5′ most
position of NCBI Refseq gene models (Pruitt et al., 2007). These
positions were used to download 1 kb proximal promoter sequences
from the latest respective genome builds for each organism from the
UCSC Genome Browser (Karolchik et al., 2003): chimpanzee
n=24,170, mouse n=20,589 and rat n=8737.

The program RepeatMasker (Smit et al., 1996–2004) was used to
detect and annotate repetitive elements in the proximal promoter
sequences. RepeatMasker was run using 500 bp of flanking sequence
on either end of the proximal promoter regions analyzed to avoid edge
effects in the detection of repeats. Repetitive elements detected by
RepeatMasker were broken down into two main categories: inter-
spersed repeats, also known as transposable elements (TEs), and
simple sequence repeats (SSRs). SSRs may be annotated as low
complexity sequences and correspond to runs of repeating k-mers
where k=1–13 bp for microsatellites and k=14–500 for minisatel-
lites. TEs were further divided into specific classes: LINEs, SINEs, LTR
and DNA as well as specific families L1 and Alu.

Proximal promoter sequences, including 500 bp flanks, were
analyzed using the Nucleosome Prediction software developed by the
Segal lab (Segal et al., 2006). This software was used to calculate the
probability of each nucleotide being occupied by a nucleosome in all
promoter sequences. These nucleosome occupancy probabilities are
based on the periodicity of dinucleotides – AA/TT/TA – that are a
characteristic of genomic sequences that have been experimentally
isolated as bound to nucleosomes. Predictions for the relative
placement of nucleosomes along genomic sequence are further
informed by a thermodynamic stability model. The nucleosome
prediction model used in our analysis is based on experimentally
characterized nucleosome bound sequences reported for chicken
(Satchwell et al., 1986). The chicken model has been proven accurate
when used on other vertebrate genomes (Segal et al., 2006). For sets
of promoter sequences, nucleosome occupancy averages were
calculated over each position of the 1 kb proximal promoter regions
and these average values were taken as the position-specific
nucleosome binding affinities (nba) reported here.

Two sets of promoter sequence randomizations were done and
position-specific nucleosome binding affinities were re-calculated on
the randomized sequence sets. The first randomization consisted of
randomly shuffling entire 1 kb proximal promoter sequences. This has
the effect of maintaining overall nucleotide composition of the
promoter sequences while changing the dinucleotide composition as
well as any regional nucleotide biases along the promoters. The
second randomization procedure consisted on randomly shuffling
non-overlapping 100 bp windows along the promoter sequences in
place. This has the effect of maintaining both overall and local
nucleotide compositions of the promoters while changing the
dinucleotide composition.

2.2. Repeat-based promoter clustering

Human proximal promoter sequences were clustered solely based
on their repetitive DNA architectures. To do this, we generated 1000-
unit vectors that represent the position-specific repeat content for
each promoter sequence. A discrete value was assigned to each
promoter sequence position (nucleotide) in the following manner:

Xi =
1 if thenucleotide is part of a TE sequence

−1 if thenucleotide is part of a SSR sequence
0 if thenucleotide is part of a non−repetitive sequence

8<
:

where Xi represents the nucleotide at position i.
Promoter sequence repeat vectors were then clustered using a

combination of k-means clustering (k=5, 10, 20) and Self Organized
Mapping using the program Genesis (Sturn et al., 2002). We found
that using k-means clustering with k=5 followed by a Self Organized
Map generated the most coherent clusters in terms of the repeat
content of the vectors.

2.3. Gene expression analysis

We used version 2 of the Novartis mammalian gene expression
atlas (GNF2), which provides replicate Affymetrix microarray data for
44,775 probes across 79 human tissues (Su et al., 2004). GNF2
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expression data, in the form of Affymetrix signal intensity values, were
obtained from the UCSC Table Browser (Karolchik et al., 2004), and
Affymetrix probes were mapped to NCBI Refseq identifiers using the
UCSC Table Browser tools. For each gene, the average, maximum and
breadth of expression were computed across the 79 tissues in the
GNF2 data set. Expression breadth is taken as the number of tissues
where the gene has a signal intensity value of N350. Co-expression
between gene pairs was measured by computing the Pearson
correlation coefficient (r) between pairs of gene-specific expression
signal intensity vectors:

gi = t1; t2 N t79½ �
where gi is the ith gene and tn is the expression level for that gene in
the nth tissue.

For each repeat-specific promoter cluster, the average r-value for
all pairwise comparisons between genes in the cluster was computed.
In addition, the difference (diff) between the cluster-specific r-value
averages (cluster-r) and all possible pairwise r-values between genes
(all-r) was computed for each cluster:

diff =cluster−r−all−r:

The significance of these differences was computed using the
normal deviate:

z= diff =sediff

where sediff is the standard error of the difference.

2.4. Probabilistic analysis of promoter repeats

We used a probabilistic representation of the repeat content of the
human proximal promoter sequence clusters in order to derive gene
(promoter)-specific similarity scores that indicate the probability that
any human gene (promoter) belongs to a specific repeat cluster. To do
this, each proximal promoter sequence (1 kb upstream of the TSS) in a
cluster was divided into 20 non-overlapping windows of 50 bp each.
For each window (w), the probability (p) of the occurrence of a TE
nucleotide, or SSR nucleotide or a non-repetitive (NR) nucleotide was
calculated separately using the following formula:

p b;wð Þ= fb;w + s bð Þ
N+

X
bVa T;S;Nf g

s bVð Þ

where fb,w=counts of base b in window w and b represents counts of
either TE nucleotides, or SSR nucleotides or non-repetitive nucleo-
tides, N=number of sites in the window (50) and s(b)=a
pseudocount function. The probabilities thus calculated for each
windowwere averaged for all promoters in the cluster. This procedure
was repeated to yield repetitive DNA probabilistic representation
models for each of the six promoter clusters.

All the proximal promoter sequences analyzed were then scored
against each of the six cluster-specific probabilisticmodels using a log-
likelihood ratio approach illustrated as follows:

LLb;w = ln
X

TE;SSR;NR

fb;wln
fb;w
fb

where fb,w=pb,w×50, which is the model frequency used as back-
ground. Promoter-specific scores (S) were then computed as the sum
of log-likelihood ratios over the 20 windows of 50 bp each:

S=
X20
w = 1

LLb;w:

Using this method, we scored all genes (promoters) against each of
the six cluster models to generate six cluster-specific gene (promoter)
score vectors. This modeling and scoring method is a modification of
the approach used to score sequence motifs, such as transcription
factor binding sites, based on motif-characteristic position-weight
matrices (Wasserman and Sandelin, 2004).

In order to relate promoter sequence repetitive DNA architecture
to tissue-specific gene expression, the gene (promoter)-specific
probabilistic repeat cluster scores were correlated with tissue-specific
gene expression signal intensity values for each of the 79 tissues in
GNF. This was repeated with gene (promoter)-specific scores assigned
to each gene for each of the six repeat clusters. For example, for the
cluster1 (c1) versus tissue1 (t1) comparison:

c1= Sg1; Sg2 N Sg7913
� �

x t1= eg1; eg2 N eg7913
� �

where gi is the ith gene, S is the score for the cluster1 model and e is
the expression level for that gene in tissue1. In other words, each gene
analyzed is assigned a repeat probability score for each of the six
clusters, and these six sets of repeat probability promoter scores are
individually correlated with the GNF2 tissue-specific expression
values for the genes. This procedure resulted in a 6×79 matrix of
correlation values.

2.5. Gene Ontology (GO) analysis

GO annotation terms (Ashburner et al., 2000) for human genes
were obtained from the Gene Ontology Annotation database (http://
www.ebi.ac.uk/GOA/). GO terms were further mapped to higher level
GO slim categories. Expected versus observed frequencies of GO slim
terms were compared using χ2 tests for each promoter repeat cluster,
as well as for the combined TE− and TE+ groups, in order to look for
over-represented GO slim categories. The pairwise similarity between
GO terms was computed using modified semantic similarity method
(Lord et al., 2003; Azuaje et al., 2005) as described previously
(Marino-Ramirez et al., 2006; Tsaparas et al., 2006). The GO similarity
difference (GOdiff) was calculated between the average pairwise
similarity for GO terms from pairs of genes within TE groups (e.g. TE
+) and the average pairwise GO similarity for all possible pairs of
genes:

GOdiff = GOsim− TE+ð Þ−GOsim− allð Þ:

The significance of the difference was measured using the normal
deviate as described for the gene expression analysis.

2.6. Statistical analysis

Standard statistical tests were used to compare population means
for pairwise (Student's t-test) and for multiple comparisons (ANOVA),
to correlated vectors of nucleosome binding affinities, TE and SSR
densities, expression and promoter score values (Pearson correlation
coefficient), to control for the confounding effects ofmultiple variables
on correlation values obtained (partial correlation) and to evaluate the
difference between observed and expected GO terms (χ2) (Zar, 1999).

3. Results and discussion

3.1. Repetitive DNA and nucleosome binding affinity

Experimentally characterized human gene proximal promoter
sequences (n=7913) were taken from the Database of Transcriptional
Start Sites (DBTSS) (Suzuki et al., 2002) and analyzed with respect to
their repetitive DNA content and nucleosome binding affinities. The
locations of repetitive DNA elements along promoter sequences were
determined by the RepeatMasker program and nucleosome binding
affinities were predicted using the method of (Segal et al. (2006). Two
classes of repetitive DNA were analyzed separately: interspersed
repeats, also known as transposable elements (TEs) and simple
sequence repeats (SSRs), which are made up of runs of exact or nearly
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exact repeating k-mers. For each promoter position, from 1 kb
upstream to the transcriptional start site (TSS), the average TE and
SSR densities over all promoter sequences were calculated as the
fraction of sequences for which that position was occupied by a TE or
SSR. Average nucleosome binding affinities across promoter positions
were calculated as the fraction of sequences for which a given position
was predicted to be occupied (bound) by a nucleosome. Average
nucleosome binding affinities and the average TE density follow
parallel trends along the proximal promoter regions (Fig. 1a).
Nucleosomes bind more tightly and TEs are found more frequently
distal to the TSS, whereas nucleosomes bind promoter sequencesmost
proximal to the TSSwith lower affinity and TEs are rarely found close to
the TSS. SSRs show a distinctly different trend with a higher density
close to the TSS that corresponds to the decrease in nucleosome
binding affinity. The SSR density matches the nucleosome binding
even more closely than the TE density just upstream of the TSS.
Nucleosome binding affinities decrease steadily from distal regions
until∼35 bp upstreamof the TSS, then the nucleosome binding affinity
increases towards the TSS. Similarly, the SSR density increases to the
same point and then drops off as the nucleosome binding affinity
increases (Fig. 1a). This core promoter region where nucleosome
binding affinity is at its lowest and SSR density is at its highest
corresponds to the locationwhere the basal transcriptional machinery
assembles, and RNA polymerase II binds, to initiate transcription.

The correlations between nucleosome binding affinities with TE
and SSR densities along human proximal promoter regions are robust
and highly statistically significant (Fig. 1b). Previously, we observed
Fig. 1. Repetitive DNA density and nucleosome binding affinity along human proximal
promoter sequences. (a) Average nucleosome binding affinities (green line, values on
left y-axis) along with average TE densities (blue line, values on right y-axis) and
average SSR densities (pink line, values on right y-axis) over 7913 human proximal
promoter sequences are plotted over each promoter position starting from −1000 bp
upstream and progressing to the transcriptional start site (TSS at position 0). (b) Linear
trends and correlations relating position-specific nucleosome binding affinities (y-axis)
to TE (blue) and SSR (pink) densities (x-axis) are shown. Statistical significance levels
of the r-values are based on the Student's t-distribution with df=n−2=998 where
t= r⁎sqrt((n−2)/(1−r2)).

Fig. 2. Nucleosome binding properties for repetitive versus non-repetitive DNA. (a)
Average predicted nucleosome binding affinities are shown for TE, SSR and non-
repetitive human promoter sequences. (b) Periodicity of the nucleosome binding
(wrapping) characteristic dinucleotides AA/TT/TA are shown for 39 experimentally
characterized nucleosome bound TE sequences from chicken. (c) Histogram showing
the inter-peak distances for AA/TT/TA dinucleotides.
that nucleotide composition changesmarkedly along human proximal
promoter sequences with an increase in CpG frequency close to the
TSS (Marino-Ramirez et al., 2004), while the nucleosome binding



Table 1
Average⁎ nucleosome binding affinities for TE classes (families)

TE class (family)a Avg nba±s.e.b

L1 0.849±6.8e–4
LINE other 0.805±7.6e–4
Alu 0.510±5.2e–4
SINE other 0.789±7.0e–4
LTR 0.807±7.9e–4
DNA 0.802±9.8e–4

a TEs are broken down by class (family) using RepeatMasker. The L1 and Alu families
are considered separately from all other LINEs and SINEs respectively. All LTR and DNA
elements are considered together as classes.

b Average nucleotide binding affinities±standard errors.
⁎ All differences are statistically significant (ANOVA, F=2.8e4, P≈0).
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prediction method we employed in this analysis relies on the
periodicity of AT-rich dinucleotides (Segal et al., 2006). Thus, it is
possible that the high (low) nucleosome binding affinity of TE (SSR)
sequences in proximal promoter regions is a corollary effect of local
differences in nucleotide composition. We attempted to control for
this possibility in several ways. First of all, average nucleosome
binding affinities were computed for all TE, SSR and non-repetitive
sequences irrespective of their locations along proximal promoter
regions. On average, TE sequences bind nucleosomes most tightly,
followed by non-repetitive DNA and SSRs, which have the lowest
nucleosome affinities (Fig. 2a); all differences are highly statistically
significant (ANOVA, F=4.5e11, P≈0).

In addition to the binding affinity observations that are based on
the nucleosome prediction software, we also analyzed the nucleo-
some wrapping characteristic AA/TT/TA dinucleotide frequencies
along experimentally characterized nucleosome bound sequences
from chicken (Satchwell et al., 1986) that we identified as being
derived from TEs (n=39). The chicken TE sequences show the
characteristic AA/TT/TA dinucleotide periodicity expected of nucleo-
some bound sequences (Fig. 2b); in fact, the average distance between
dinucleotide peaks for these TE sequences is ∼10.3 bp, which is close
to the expected distance of 10.2 bp corresponding to one turn of the
Fig. 3. Clusters of human proximal promoters based on their repetitive DNA sequence di
−1000 bp upstream to the transcriptional start site (TSS). Promoter sequences are color c
positions occupied by TEs are shown in blue, SSR positions are shown in yellow and non-rep
number of sequences in each cluster. There are two (c1 and c2) clusters that contain promot
four clusters (TE+, c3–c6) contain increasing numbers of TEs.
DNA helix (Fig. 2c). This is significant because DNA sequences are
thought to wrap around nucleosomes by bending sharply at each
repeating turn of the DNA helix, and this sharp bending is facilitated
by the specific AA/TT/TA dinucleotides (Widom, 2001).

We also attempted to control for nucleotide composition effects by
randomizing promoter sequences and re-calculating nucleosome
binding affinities. First, entire 1 kb promoter sequences were
randomized and nucleosome binding affinities were re-calculated.
This control procedure has the effect of eliminating both native
dinucleotide occurrences and local nucleotide composition biases. The
average nucleotide binding affinity for such randomized promoter
sequences (nba=0.16) is ∼3× lower than seen for the observed
promoter sequences (nba=0.49), and the difference between
random and observed affinities is highly significant (t=23,
P=5.3e–100). In addition to differences in the magnitude of the
nucleosome binding affinities, the relative affinity trends along the
promoters were compared for the random versus observed sets.
Partial correlation was used to control for the effects of the random
sequences on the observed relationship between nucleosome binding
affinity with TE and SSR densities along proximal promoters. The
positive (negative) correlations between nucleosome binding for TE
(SSR) do not change when the correlations between random
sequences and nucleosome binding along the promoters are
accounted for [rnba·TE|random1=0.99 and rnba·SSR|random1=0.85].

A second randomization procedure was done to account for local
differences in nucleotide composition along proximal promoter
sequences. In this case, sequences were randomized within non-
overlapping 100 bpwindows along thepromoters. This had the effect of
eliminating native dinucleotide occurrences while maintaining local
nucleotide composition. Aswith the complete sequence randomization
procedure, the locally randomized sequences have significantly lower
nucleosome binding affinities (nba=0.23) than the observed
sequences (nba=0.49), and this 2.1× difference is highly statistically
significant (t=17, P=5.0e–55). Clearly, local nucleotide composition
alone cannot explain the observed nucleosome binding affinities.
However, the relative trends in nucleosome binding show different
stributions. Proximal promoter sequences are represented left-to-right from position
oded according to their repeat element distributions. Individual promoter nucleotide
etitive positions are shown in black. The vertical size of the clusters corresponds to the
ers largely devoid of TE sequences (TE−), and the promoter sequences of the remaining



Fig. 4. Gene expression comparison for TE− versus TE+ promoter clusters. Human
gene expression data are from the Novartis mammalian gene expression atlas version
2 (GNF2). (a) Average level of expression, (b) maximum level of expression and (c)
breadth of expression across 79 human tissues (cells) are compared for genes that
have TE− versus TE+ promoter sequences. Statistical significance levels are based on
the Student's t-test.

Fig. 5. Gene co-expression for repeat-specific proximal promoter clusters. Average
pairwise Pearson correlation coefficients (r) for gene expression across 79 human
tissues are shown for clusters 1–6 (see Fig. 3) as well as for the TE− versus TE+ clusters
(inset). Statistical significance levels are based on ANOVA for multiple comparisons and
on the Student's t-test for the TE− versus TE+ comparison.
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local nucleotide composition effects for TEs versus SSRs. The partial
correlation controlling for the effects of local nucleotide compositionon
the relationship between TE density and nucleosome binding elim-
inates the positive correlation seen across the entire promoter for the
observed data [rnba·TE|random2=−0.14]. This suggests that local
nucleotide composition bias influences the decreasing trend in
nucleosome binding affinities along proximal promoters irrespective
of TE density. Interestingly, this same mitigating effect of local
nucleotide composition is not seen for the relationship between SSRs
and nucleosome binding [rnba·SSR|random2=−0.53]. This suggested the
possibility that most of the local nucleotide composition bias effect on
the relationship betweenTEs and nucleosome bindingmay be confined
to the region closest to the TSS where TEs are largely absent and SSRs
are at their most dense (Fig. 1a). Indeed, when partial correlation
controlling for local nucleotide bias is done excluding 150 bp upstream
of the TSS, the positive correlation between TEs and nucleosome
binding affinity remains [−1000 to −150 rnba·TE|random2=0.76]. In
other words, positive TE effects on nucleosome binding are most
evident away from the TSS, while the SSRs that inhibit nucleosome
binding act closest to the TSS.

Taken together, these data suggest the intriguing possibility that
the human genome utilizes repetitive DNA content along promoter
regions to tune nucleosome binding in such a way as to facilitate
maximum access of the basal transcriptional machinery just upstream
of TSS. Furthermore, different classes of repeats play distinct roles in
this process; TEs bind nucleosomes tightly yielding compact less
accessible DNA, while SSRs extrude nucleosomes creating a relatively
open chromatin environment.

3.2. Cross-species comparison

In addition to the human genome analysis, the relationship
between nucleosome binding and repetitive DNA content of
proximal promoter regions was evaluated for four additional mamma-
lian species with complete genome sequences available: chimpanzee
(P. troglodytes), mouse (M. musculus) and rat (R. norvegicus). For these
species, NCBI Refseq genemodelswere used to define TSS andproximal
promoter regions, while TE and SSR repeats and nucleosome binding
were analyzed aswasdone for thehumangenome. The trends observed
for human are highly similar to those seen for the other mammalian
species (Supplementary Fig. 1). In chimpanzee, mouse and rat,
nucleosome binding affinities decrease steadily along the proximal
promoter region until the core promoter, b50 bp from the TSS, where
nucleosome binding begins to increase. For these three species, TE
density drops precipitously and steadily along the proximal promoter
while SSR density increases sharply at first in the core promoter near
the TSS and then drops off again as nucleosome binding affinity
increases. Thus, repeat-rich mammalian genomes appear to use
repetitive DNA elements to tune nucleosome binding and core
promoter accessibility in similar ways. The conservation of the
relationship between repetitive DNA and nucleosome biding in core
promoters of severalmammalian species suggests that thismechanism
may have evolved early in the mammalian radiation as repetitive



Fig. 6. Differences in gene co-expression between cluster-specific gene pairs versus all
possible pairs of genes. Average pairwise Pearson correlations (r) for gene expression
across 79 human tissues were measured for all possible gene pairs and this value was
subtracted from the average pairwise r-values for genes within each repeat-specific
cluster (c1–c6). A negative value indicates that genes within the cluster have less
similar co-expression than background, whereas a positive value indicates that genes
within a cluster are more highly co-expressed than expected.
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elements were proliferating within genomes. However, many of the
repetitive elements that yield these patterns evolve rapidly and are
lineage-specific. Accordingly, there may be an ongoing dynamic
between repeat generation bymutation and/or transposition followed
by selection based on the promoter location of the repeat and specific
requirements for chromatin accessibility. For TEs in particular, this
could simply mean that the elements are eliminated from core
promoter regions close to the TSS by purifying selection. Indeed,
negative selection against TE insertions closest toTSSwould seem to be
the easiest way to explain the observed pattern of TE density (Fig. 1a
and Supplementary Fig. 1). However, our analysis of gene expression
data, described in following sections, suggests that this is not the case.
SSRs, on the other hand, appear to be favored in core promoter regions.

3.3. TE-specific effects on nucleosome binding affinity

The Repbase library of repetitive DNA elements used by the
program RepeatMasker can be used to annotate TEs into different
classes and families (Jurka et al., 2005; Kapitonov and Jurka, 2008).
Using this approach, humanTE sequences were divided into LINEs, (L1
and other LINES), SINEs (Alu and other SINEs), LTR retrotransposons,
and DNA transposons to determine if different classes (families) of
elements show differential nucleosome binding affinities (Table 1). In
general, LINEs, LTR retrotransposons and DNA transposons have
higher affinities for nucleosomes compared to SINEs. Specifically, L1
elements exhibit the highest nucleosome binding affinities while Alu
elements display the lowest affinity for nucleosomes. All differences
are statistically significant (Table 1, ANOVA).
Fig. 7. Promoter repetitive DNA architecture and tissue-specific gene expression. Probabilistic
cluster (see Fig. 3 and Supplementary Fig. 2). Cluster-specific probabilistic models were used
cluster (Materials and methods). Vectors of cluster-specific gene scores were correlated with
relative correlation values between gene (promoter)-specific scores for each cluster and tissu
version 2 (GNF2). Relatively high (positive) correlations between gene-cluster scores and gen
Two specific examples of such correlations are shown in panels b and c. (b) Gene (promoter
with gene expression levels in a B lymphoblast cell line. (c) Gene (promoter)-specific sco
expression levels in a B lymphoblast cell line. In other words, genes with repetitive DNA pro
lymphoblast cell line, whereas genes with repetitive DNA promoter profiles that resemble c
The differences in nucleosome binding affinities between L1 and
Alu are consistent with their respective nucleotide compositions and
perhaps also relevant to their genomic distributions. L1 elements, and
LINEs in general, are more AT-rich than Alus (SINEs), and AT-rich
sequences are more likely to bind nucleosomes tightly as discussed
previously. L1 elements are also biased towards intergenic regions in
their distribution, while Alu elements are found primarily in gene rich
regions. In fact, it has been shown that Alus are preferentially retained
in GC- and gene-rich regions of the genome, and this has been taken to
suggest that they may be selectively fixed therein by virtue of some
gene-related function that they play (Lander et al., 2001). Our data
showing lower nucleosome binding for Alu elements suggests that
they may be retained in gene regions by virtue of their ability to
maintain a relatively open chromatin environment. Conversely, L1
elements may help to maintain compact chromatin structure
characteristic of intergenic regions.

3.4. Promoter repeat architecture and gene expression levels

In light of the observed relationship between repetitive DNA
elements and nucleosome binding, we used the repetitive DNA
content of proximal promoter regions to group human genes into
related clusters. The gene expression and functional properties of the
clusters were then compared to their characteristic repeat architec-
tures. To cluster human genes using their promoter repeat distribu-
tions, proximal promoter sequences were represented as 1000-unit
vectors with each position in a sequence-specific vector receiving a
score indicating whether that particular nucleotide is part of a TE, SSR
or non-repetitive sequence. These gene-specific promoter repeat
vectors were then compared using a distance metric and clustered as
described (Materials and methods). This approach ensured that the
clusters reflect both the abundance, or lack thereof, and the location of
distinct repetitive DNA elements in human promoter sequences. In
other words, this scheme relates human genes solely by virtue of their
promoter repeat distributions.

We obtained six repeat-specific clusters of human genes in this
way (Fig. 3), each cluster representing a distinct overall pattern of TE
and/or SSR content and distribution. Two of these clusters (c1 and c2,
TE−) consist of genes that are largely devoid of TEs, while four consist
of genes with increasing TE densities (c3–c6, TE+). c1 does not
contain any repetitive DNA, while c2 is enriched in SSR sequences and
has very low TE content. c3–c6 have progressively more TE content
with locations shifting slightly towards the TSS.

The gene expression properties of the human genes in these
clusters were analyzed using version 2 of the Novartis mammalian
gene expression atlas (GNF2) (Su et al., 2004). This data set consists of
Affymetrix microarray experiments, performed in replicate, on 79
different human tissue (cell) samples. For each human gene, over 79
tissues, we computed the average expression level, maximum
expression level and breadth of expression as described (Materials
and methods); cluster-specific averages for each of these parameters
were then compared (Fig. 4). We were surprised to find that clusters
that contain TEs (c3–c6, TE+) have higher average, maximum and
breadth of expression than clusters that are largely devoid of TEs (c1
and c2, TE−). Gene expression levels are known to correlate with a
models were used to represent the repetitive DNA architectures of each repeat-specific
to score individual promoter sequences in terms of how closely they resemble a given
vectors of gene expression values specific human tissues. (a) A heat map illustrating the
e-specific gene expression values for the 79 tissues in the Novartis gene expression atlas
e expression levels are shown in red and low (negative) correlations are shown in blue.
)-specific scores based on the probabilistic model for cluster 2 are negatively correlated
res based on the probabilistic model for cluster 6 are positively correlated with gene
moter profiles that most closely resemble cluster 6 are more highly expressed in the B
luster 2 have lower levels of B lymphoblast expression.
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number of measures of gene ‘importance’ such as sequence and
phylogenetic conservation, fitness effects, numbers of protein inter-
actions, etc. (Duret and Mouchiroud, 2000; Pal et al., 2001; Krylov
et al., 2003; Zhang and Li, 2004; Wolf et al., 2006). In other words,
genes that are more highly and broadly expressed are under greater
purifying selection than genes with lower expression levels. If TEs are
eliminated from proximal promoter sequences by purifying selection,
then one may expect that TE+ promoters would have lower, and not
higher as we observe, levels of gene expression than TE− promoters.
In other words, our analysis of repeat cluster gene expression levels
argues against the straightforward interpretation that the paucity of
TEs in proximal promoter sequences, and their decreasing frequency
closer to TSS, is a result of purifying selection against disruptive
insertions in core promoters.

On the other hand, one may expect that genes with more
restricted and more tightly regulated expression, such as develop-
mental genes, would have more TE sensitive promoters than genes
that are highly and broadly expressed. In fact, developmental genes
are known to have promoters that are largely devoid of TEs (Simons
et al., 2006, 2007). This may reflect the fact that such genes are
more finely and tightly regulated and accordingly contain more
complex promoters with higher numbers of cis-regulatory elements.
If this is indeed the case, then the paucity of TEs in proximal
promoter regions may still be explained, to some extent, by
purifying selection against disruptive insertions. Discrimination
between these two hypotheses regarding the selective elimination,
or lack thereof, of proximal promoter TE sequences awaits further
analysis.

3.5. Promoter repeat architecture and tissue-specific gene co-expression

In addition to analyzing repeat cluster gene expression levels, we
also evaluated the relationship between the tissue-specific expression
patterns of genes across the 79 tissues from GNF2 and their promoter
repeat content. To do this, gene-specific vectors of expression levels
across tissues were compared using the Pearson correlation coeffi-
cient (r); positive values of r indicate gene pairs that are co-expressed
across tissues. For each cluster, average r-values were computed based
on all pairwise comparisons within the cluster (Fig. 5). Higher average
r-values are associated with increasing TE promoter content of the
clusters. For instance, there is a positive (R=0.77), albeit marginally
significant (z=1.72, P=0.1), rank correlation between cluster TE
content and co-expression. In addition, all four TE+ clusters have
greater average co-expression than either of the TE− clusters, and the
average r-value for TE+ clusters together is significantly greater than
seen for the combined TE− clusters (Fig. 5).

The possibility of gene co-regulation within repeat clusters was
also evaluated by taking the difference between the average r-value
for all pairwise comparisons within clusters to average pairwise r-
value for all gene comparisons (Materials and methods) (Fig. 6). If
genes within clusters are co-regulated, then the value of this
difference should be positive, whereas no co-regulation will yield a
negative difference value. The TE− clusters 1 and 2 have negative
difference values indicating that genes with no TEs in their promoters
are less co-expressed with other genes possessing a similar lack of
repeats than they are with all genes. On the other hand, the TE+
clusters 3–6 all have positive difference values further demonstrating
that genes with similar repetitive DNA profiles in their promoters are
more closely co-expressed than random pairs of genes. The difference
values for each cluster are statistically significant (7.3NzN100.6, 1.4e–
13bPb0).

Taken together, these observations on gene co-expression also argue
against the notion that TE insertions in proximal promoter sequences
are basically disruptive or deleterious, since the presence of similar TE
promoter distributions implies a higher level of gene co-regulation than
the absence of TEs does. This is not to say that themajority of de novoTE
insertions in and around functional promoter sequences are not
deleterious, clearly they are. However, the repeat sequences that have
been fixed in proximal promoter sequences do appear to make
functionally relevant contributions to chromatin accessibility and help
to regulate levels and specific patterns of gene expression.

3.6. Probabilistic analysis of promoters and gene expression

Given the relationship between gene expression and the repetitive
DNA architecture of human promoters we observed, we wanted to
further evaluate the propensity of human genes to be expressed in
specific tissues based on the repetitive DNA content of their promoters.
To do this, we used a probabilistic representation of cluster-specific
promoter architectures together with the GNF2 expression data. This
involved partitioning 1 kb proximal promoter sequences into 20 non-
overlapping windows of 50 bp each, and for a given cluster,
representing the probability of observing TE, SSR or non-repetitive
nucleotides in each window (Materials and methods). The proba-
bilistic representation of promoter repeat architectures we employed
is mathematically analogous to the probabilistic representations of
positionweightmatrices (PWMs) used to summarize position-specific
residue frequencies among collections of sequence motifs such as
transcription factor biding sites (Wasserman and Sandelin, 2004).
Accordingly, promoter repeat profiles can be represented as sequence
logos showing the probability and distribution for sites of different
repeat classes (Supplementary Fig. 2). The cluster-specific promoter
repeat profiles can then be used to score individual promoter
sequences just as PWM representations can be used to score putative
motif sequences. Connecting these cluster- and position-specific
promoter repeat profiles to tissue-specific gene expression profiles
was done in a way that is similar to the methodology used to connect
the presence of transcription factor binding sitemotifs to specific gene
expression patterns (Conlon et al., 2003).

For each of the 79 tissues in GNF2, each promoter sequence was
given six cluster-specific scores, and for each cluster, the gene-specific
scores were correlated with the tissue-specific gene expression levels
(Materials and methods). This resulted in a 6-by-79 matrix of cluster-
by-tissue correlations (Fig. 7). The TE+ clusters 4 and 6 show
particularly high correlations with a number of tissues, such as B
lymphoblasts (Figs. 7b and c), whereas the TE− clusters 1 and 2 show
low correlations with the same tissues and lower correlations overall.
This indicates that certain repeat-rich promoter architectures play a
role in driving tissue-specific expression, while repeat poor promoters
have less coherent regulatory properties. In addition, the differences in
promoter score-expression level correlations across tissues and
between clusters indicate that different repeat contexts are likely to
have tissue-specific regulatory functions. Hierarchical clustering of the
tissues and the clusters, according to the promoter score-expression
level correlations, group related tissues together including reproduc-
tive tissues, immune related cells and cancer samples (Fig. 7a). This
indicates that TE-rich promoters may help to regulate genes that
function specifically in these tissues further underscoring the biological
significance of promoter sequence repetitive DNA profiles.

3.7. Gene Ontology analysis

Having established a connection between repetitive DNA promoter
architectures and gene regulation, we wondered whether genes with
similar promoter repeat distributions encoded proteins with related
functions. In order to test this, we used analysis of Gene Ontology (GO)
terms for genes within and between the TE− versus the TE+ repeat-
specific promoter clusters (Fig. 3). A modified version of the GO
semantic similarity measure (Lord et al., 2003; Azuaje et al., 2005) was
used to compare the similarities between GO terms within clusters
versus the background GO similarity among all pairs of genes. As
described previously (Marino-Ramirez et al., 2006; Tsaparas et al.,



Table 2
Over-represented⁎ GO slima terms for repeat-specific promoter clusters

Groupb Molecular functionc Cellular componentc Biological processc

TE− GO:0030528: transcription regulator activity – GO:0007154: cell communication
GO:0007275: multicellular organismal development
GO:0050789: regulation of biological process

TE+ GO:0003824: catalytic activity GO:0005737: cytoplasm GO:0006810: transport
GO:0016491: oxidoreductase activity GO:0007154: cell communication

C1 GO:0005198: structural molecule activity – –

C2 GO:0016301: kinase activity – GO:0007154: cell communication
GO:0016491: oxidoreductase activity GO:0007275: multicellular organismal development
GO:0030528: transcription regulator activity GO:0007610: behavior

GO:0030154: cell differentiation
GO:0050789: regulation of biological process

C3 – – –

C4 GO:0003824: catalytic activity GO:0005737: cytoplasm GO:0006944: membrane fusion
GO:0009056: catabolic process

C5 GO:0004872: receptor activity GO:0009986: cell surface GO:0050896: response to stimulus
GO:0005215: transporter activity
GO:0022857: transmembrane transporter activity

C6 GO:0003824: catalytic activity GO:0005622: intracellular GO:0008152: metabolic process
GO:0005737: cytoplasm GO:0009058: biosynthetic process

a GO slim categories provide a high level view of GO functions and subsume a number of lower (more granular) GO functional annotation categories.
b Repeat-specific clusters 1–6 along with the combined TE+ and TE− groups (see Fig. 3).
c GO functional annotation categories.
⁎ Statistical significance for over-represented terms was evaluated using with χ2 tests with at least χ2N4.2, Pb0.04.
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2006), the GO semantic similarity approach measures the pairwise
similarity between annotation terms along the GO directed acyclic
graph in order to evaluate the functional similarity between pairs of
genes. For TE− and TE+ genes, the GO similarity difference (GOdiff) is
equal to the average GO similarity for all gene pairs within clusters
minus the average GO similarity for all possible gene pairs (Materials
and methods). Negative values of GOdiff indicate that gene pairs are
more similar within clusters than for all possible pairs. Both the TE−
and TE+ gene sets encode proteins that are significantly more
functionally similar than the background comparison set [TE−=
−3.4e–3, z=34, P≈0; TE+=−7.9e–3, z=11, P=4.8e–3]. However,
within the TE+ clusters, pairs of genes encode proteins that are
significantly more functionally similar, on average, than the pairs of
genes found within the TE− clusters (t=5.8, P=6.4e–9). This is
consistent with the stronger signal of gene co-regulation seen for
clusters of promoter sequences that are enriched for TEs and under-
scores the potential biological significance of repeat-rich promoter
sequences in the human genome.

Given the functional coherence of repeat-specific clusters demon-
strated by the GO similarity analysis, we wanted to evaluate whether
certain GO functional categories are over-represented within specific
clusters. To do this,we traced theGO terms represented in thedataset to
GO slim terms (Table 2). GO slim categories provide a higher level view
of more granular individual GO annotations in order to provide an
overview of the kinds of functions that may be over-represented in
different groups. The observed counts of GO slim categories for each of
the six repeat-specific clusters, as well as for the combined TE− and TE
+, groups were compared to their expected values based on the
background GO slim frequencies across all clusters to look for over-
represented terms. Genes in the electron transport, cytoplasm, catalytic
activity and oxidoreductase activity categories were found to be over-
represented in TE+ clusters and accordingly under-represented in the
TE− clusters, whereas genes in cell communication, multicellular
organismal development, regulation of biological process and tran-
scription regulator activity categories are over-represented in TE−
clusters and under represented in TE+ clusters. Evaluation of over-
represented GO terms in individual clusters reveals coherence across
the three categories of GO terms: molecular function, cellular
component and biological process. For instance, the TE+ cluster 5 has
anover-represented receptor and transporteractivities in themolecular
function category that agree with the cell surface cellular component
term and the response to stimulus biological process term. The over-
represented catalytic activity molecular process term for the most TE-
rich cluster 6 corresponds to a cytoplasmic cellular component term
along with metabolic and biosynthetic biological process terms. In a
general sense, the coherence of GO functional annotations within
repeat-specific clusters and the differences between clusters are
consistent with biological significance of the regulatory differences
seen for these clusters.

4. Conclusion

Wehave uncovered a connection between repetitive DNA sequences
and nucleosome binding in human proximal promoter regions along
with an influence of repetitive DNA promoter sequences on specific
patterns of gene expression. Interestingly, different classes of repetitive
elements function differently to mediate nucleosome binding; TEs bind
nucleosomes tightly and are generally excluded from core promoter
regions, while SSRs have a low affinity for nucleosomes and are en-
riched just upstream of TSSs. Thus, it appears that repetitive sequence
elements are differentially utilized to tune the accessibility to promoter
sequences by transcription factors, particularly the basal transcriptional
machinery that assembles just upstream of the TSS, via changes in the
local chromatin environment.
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